Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.13.583470

ABSTRACT

Non-structural protein 10 (nsp10) and non-structural protein 16 (nsp16) are part of the RNA synthesis complex, which is crucial for the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nsp16 exhibits 2-O-methyltransferase activity during viral messenger RNA capping and is active in a heterodimeric complex with enzymatically inactive nsp10. It has been shown that inactivation of the nsp10-16 protein complex interferes severely with viral replication, making it a highly promising drug target. As information on ligands binding to the nsp10-16 complex (nsp10-16) is still scarce, we screened the active site for potential binding of drug-like and fragment-like compounds using X-ray crystallography. The screened set of 244 compounds consists of derivatives of the natural substrate S-adenosyl methionine (SAM) and adenine derivatives, of which some have been described previously as methyltransferase inhibitors and nsp16 binders. A docking study guided the selection of many of these compounds. Here we report structures of binders to the SAM site of nsp10-16 and for two of them, toyocamycin and sangivamycin, we present additional crystal structures in the presence of a second substrate, Cap0-analog/Cap0-RNA. The identified hits were tested for binding to nsp10-16 in solution and antiviral activity in cell culture. Our data provide important structural information on various molecules that bind to the SAM substrate site which can be used as novel starting points for selective methyltransferase inhibitor designs.


Subject(s)
Coronavirus Infections
2.
Sebastian Guenther; Patrick Y A Reinke; Yaiza Fernandez-Garcia; Julia Lieske; Thomas J Lane; Helen Ginn; Faisal Koua; Christiane Ehrt; Wiebke Ewert; Dominik Oberthuer; Oleksandr Yefanov; Susanne Meier; Kristina Lorenzen; Boris Krichel; Janine Kopicki; Luca Gelisio; Wolfgang Brehm; Ilona Dunkel; Brandon Seychell; Henry Gieseler; Brenna Norton-Baker; Beatriz Escudero-Perez; Martin Domaracky; Sofiane Saouane; Aleksandra Tolstikova; Thomas White; Anna Haenle; Michael Groessler; Holger Fleckenstein; Fabian Trost; Marina Galchenkova; Yaroslav Gevorkov; Chufeng Li; Salah Awel; Ariana Peck; Miriam Barthelmess; Frank Schluenzen; Xavier P Lourdu; Nadine Werner; Hina Andaleeb; Najeeb Ullah; Sven Falke; Vasundara Srinivasan; Bruno Franca; Martin Schwinzer; Hevila Brognaro; Cromarte Rogers; Diogo Melo; John J Doyle; Juraj Knoska; Gisel E Pena Murillo; Aida Rahmani Mashhour; Filip Guicking; Vincent Hennicke; Pontus Fischer; Johanna Hakanpaeae; Jan Meyer; Philip Gribbon; Bernhard Ellinger; Maria Kuzikov; Markus Wolf; Andrea Rosario Beccari; Gleb Borenkov; David von Stetten; Guillaume Pompidor; Isabel Bento; Saravanan Panneerselvam; Ivars Karpics; Thomas R Schneider; Maria Garcia Alai; Stephan Niebling; Christian Guenther; Christina Schmidt; Robin Schubert; Huijong Han; Juliane Boger; Diana Monteiro; Linlin Zhang; Xinyuanyuan Sun; Jonathan Pletzer-Zelgert; Jan Wollenhaupt; Christian Feiler; Manfred S. Weiss; Eike C. Schulz; Pedram Mehrabi; Katarina Karnicar; Aleksandra Usenik; Jure Loboda; Henning Tidow; Ashwin Chari; Rolf Hilgenfeld; Charlotte Uetrecht; Russell Cox; Andrea Zaliani; Tobias Beck; Matthias Rarey; Stephan Guenther; Dusan Turk; Winfried Hinrichs; Henry N Chapman; Arwen R Pearson; Christian Betzel; Alke Meents.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.12.378422

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for the virus replication and, thus, a potent drug target. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.02.043554

ABSTRACT

Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL